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Impulse Response of a Discrete System

€ The response of a discrete time system to a discrete impulse at the input
is known as the system’s impulse response

x[n] = 6[n] h[n] = discrete impulse response
»  H{} >
x(t) = §(¢t) h(t) = continuous impulse response

€ The impulse response of a linear system completely defines and
characterises the system — both its transient behaviour and its frequency
response.

€ This applies to both continuous time and discrete time linear systems.

€ An impulse signal contains ALL frequency components (L3, S7).
Therefore, applying an impulse to input stimulates the systems at ALL
frequencies.

€ Since integrating a unit impulse = a unit step function, we can obtain the
step response of the system by integrating the impulse response.
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Discrete signal as sum of weighted impulses

® Remember from L10, S7, we can represent a causal discrete signal x[n]
in terms of sum of weighted delayed impulses:

x[n]
X[9]
X[2] X[4]
X[O]+ X[.ﬂ ¢ )33] ¢ s0 o000 —
0 1 2 3 4 ) n
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Impulse Response and Convolution
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¢ We can therefore derive the output of a discrete linear system, by adding
together the system’s response to EACH input sample separately.

€ This operation is known as convolution:
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Convolution example - COVID vaccination

€ Covid vaccine require two doses, 3 weeks apart. Impulse response h[n]

for this vaccination system is:
hin] Impulse response

x[n] Vaccination y[n] 1 * T

S h[n] —>

¢ UK started vaccination of its elderly population with a plan of vaccinating,
say, 1000 people per day after the first day (day 0). The input x[n] is:

10;(5”]* I I ! O

0

€ How many doses would NHS need to provide from day 07 (i.e. y[n])
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Graphical representation of Convolution

Impulse response
REFLECTED at origin

X[m]
1000 *

0
h[n-m]

20 21 m

Convolution in 4 steps:
1. Reflect impulse response at original

2. Multiply with input sequence
3. Sum to produce current output
4. Shift 1 sample period and repeat

n=20

* n=21

yin]
1000* T T
3

0 1 2

20 n
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Impulse Response & Frequency Response

€ Since a unit impulse contains all frequency, and its Fourier transform is a
constant at 1 (see L3, S7), the Fourier transform of the impulse response

h[n] or h(t) give us the systems’ frequency response:

x[n] = d[n] > H{} > h|n]
Fourier 1 _Ilz_ourlefr
Transform ransiorm
H[jnQ] = discrete frequency response
X[n]=1 »  H{} >

€ This applies to both continuous time and discrete time linear systems.

€ An impulse signal contains ALL frequency components (L3, S7).
Therefore, applying an impulse to input stimulates the systems at ALL
frequencies.
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Amplitude

Moving Average Filter = FIR lowpass filter
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¢ N-tap (or N point) moving after filter — high N, lower the cut off frequency
€ For a N-tap moving average filter, it impulse response has N impulses.

¢ |[f input x[n] has M non-zero samples (i.e. finite length), output y[n] is also finite in
length, and has M+N non-zero samples. Hence the name Finite Impulse Response
(FIR) filter.
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Frequency Response of N-tap moving average filter

€ The impulse response of a moving
average filter is a rectangular pulse.

€ The Fourier transform of a rectangular
pulse is of the form (sin x)/x or sinc(x) 12

function (see Lecture 3 slide 6) in the
case of continuous time. BN [ — L """""" ““““““
¢ For discrete time case, the frequency 4% N B
response of a moving average filter 2. |} \Tipoml N\l [ R
with N taps (or points) is: E \
0.4-+————y— 3l point __{ _N_____ i b
_ sin(fN) SR W D Il
HIf] = Nsin f 1y P
0.0 % AR LN,
® Here fis normalised to 0 -> 0.5 x ’ v Oﬁrequencsj . "

sampling frequency fs.
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Recursive or Infinite Impulse Response Filter

x[n] =

{1.0,1.0,1.0,1.0,1.1,0.8,1.2,0.9,1.0, 1.2,0.9, ...} m
x[n]
x[n—1] x[n—-2] x[n—3]
Z-1 Z-1 Z-1

y[n] = (0.25, 0.5, 0.75, 1
0.975, 1.025, 1.0, 1.0, 1

<
\S)
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yn]

1.025,
75,1.0, .....

y[n]

7-1

y[n] = (0.4, 0.64, 0.784, 0.87, 0.962,
0.897, 1.018, 0.971, 0.983, 1.07,
1.002.....}
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Complementary Filter used with IMU

il Complementary Filter
accelerometer
angle p . Lowpass (1 - a) __, Betterangle
Tit Filter measurement &

Gyro rate of

change inangle 6 B fe dt L., Highpass || , |

Filter
angular
»  velocity
angle 0,,.,, = ax( O,1q + 9dt)+(1—a)><p
where o, = scaling factor chosen by users and is typically between 0.7 and 0.98

p = accelerometer angle

0,,.w = New output angle

8,14 = previous output angle

0 = gyroscope reading of the rate of change in angle
dt = time interval between gyro readings
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Signal flow diagram model

Complementary Filter

accelerometer
angle a[n] .
|- @ .y Filter angle p[n]

Gyro rate of change [n]dt Z1

in angle g[n] N fg dt _’ » l

pln] = a(p[n — 1] + g[n]xdt) + (1 — @)a[n]

def read_imu(dt):
global g_pitch
alpha = 0.7 # larger = longer time constant
pitch = int(imu.pitch())
roll = int(imu.roll())
g_pitch = alphax(g_pitch + imu.get_gy()*dt%0.001) + (1-alpha)*pitch

nn
|

PYKC 24 Feb 2025 DE2 — Electronics 2 Lecture 13 Slide 12



Lowpass filter the accelerometer data

Low pass filter

accelerometer

5 Filter angle p[n]

angle a[n] Q
| A-a) )

€ Now assume that gyroscope reading is zero (i.e.
steady state tilt), g[n] = 0.

€ Now the system is exactly the same as that in Lecture
12, slide 12.

€ Therefore the accelerometer data a[n] is lowpass
filtered!xx

pln] = ap[n — 1] + (1 — a)a[n]

1 z-Transform

Plz] = az71P[z] + (1 — a)A[Z]
Plz] — az71P[z] = (1 — a)A[z]
Hlz] = Plz]/Alz] = ——

1—az 1

Time Constant T = ﬁ dt

and dt is the sampling period

PYKC 24 Feb 2025 DE2 — Electronics 2

Lecture 13 Slide 13




Integrating the gyroscope reading

Integrator for gyro angle

@ ~  Filterangle p[n]
. -1
Gyro data is 6[n] £

O[n]dt ——> b l

p[n] = a(p[n — 1] + 6[n]dt)
pln] = a™p[0] + a"k

¢ Assume the gyro is not moving, but has a constant offset 6,.
€ dt is also constant.

¢ If a =1, p[n] is a ramp with a gradient of 6,.
¢ If a < 1, then the effect of the error overtime diminishes to a™ — 0.
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Three Big Ideas (1)

1. A discrete time system can be characterized by its impulse response:
hin] = by6[n] + by6[n — 1] + b,8[n — 2] ... +b6[n — k]

h{n]

0.25
T T T T Impulse response of a 4-tap
} —l moving average filter
0 1 2 3

2. Once we know the impulse response h[n], and the input sequence
x[n], we can find the output y[n] by convolution:
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Three Big Ideas (2)

3. Convolution operation can be performed in four steps:

1) Reflect impulse response at original to get h[n-m]
2) Multiply input sequence x[m] with h[n-m]
3) Sum the product of the two sequences to get one output y[n]

4) Advance the reflected impulse response by one sample period
and repeat to get the next y[n]
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