

Lecture 13 Impulse Response & Filters

Peter Cheung Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/ E-mail: p.cheung@imperial.ac.uk

PYKC 24 Feb 2025

Impulse Response of a Discrete System

The response of a discrete time system to a discrete impulse at the input is known as the system's impulse response

$$x[n] = \delta[n]$$

 $H\{.\}$
 $h[n] = discrete impulse response$
 $h(t) = continuous impulse response$

- The impulse response of a linear system completely defines and characterises the system – both its transient behaviour and its frequency response.
- This applies to both continuous time and discrete time linear systems.
- An impulse signal contains ALL frequency components (L3, S7). Therefore, applying an impulse to input stimulates the systems at ALL frequencies.
- Since integrating a unit impulse = a unit step function, we can obtain the step response of the system by integrating the impulse response.

Discrete signal as sum of weighted impulses

 Remember from L10, S7, we can represent a causal discrete signal x[n] in terms of sum of weighted delayed impulses:

Impulse Response and Convolution

 We can therefore derive the output of a discrete linear system, by adding together the system's response to EACH input sample separately.

This operation is known as convolution:

$$y[n] = x[n] * h[n] = \sum_{m=0}^{\infty} x[m]h[n-m]$$

Convolution example - COVID vaccination

 Covid vaccine require two doses, 3 weeks apart. Impulse response h[n] for this vaccination system is:

 UK started vaccination of its elderly population with a plan of vaccinating, say, 1000 people per day after the first day (day 0). The input x[n] is:

How many doses would NHS need to provide from day 0? (i.e. y[n])

Graphical representation of Convolution

Impulse Response & Frequency Response

Since a unit impulse contains all frequency, and its Fourier transform is a constant at 1 (see L3, S7), the Fourier transform of the impulse response h[n] or h(t) give us the systems' frequency response:

- This applies to both continuous time and discrete time linear systems.
- An impulse signal contains ALL frequency components (L3, S7). Therefore, applying an impulse to input stimulates the systems at ALL frequencies.

Moving Average Filter = FIR lowpass filter

- N-tap (or N point) moving after filter high N, lower the cut off frequency
- For a N-tap moving average filter, it impulse response has N impulses.
- If input x[n] has M non-zero samples (i.e. finite length), output y[n] is also finite in length, and has M+N non-zero samples. Hence the name Finite Impulse Response (FIR) filter.

PYKC 24 Feb 2025

Frequency Response of N-tap moving average filter

- The impulse response of a moving average filter is a rectangular pulse.
- The Fourier transform of a rectangular pulse is of the form (sin x)/x or sinc(x) function (see Lecture 3 slide 6) in the case of continuous time.
- For discrete time case, the frequency response of a moving average filter with N taps (or points) is:

$$H[f] = \frac{\sin(fN)}{N\sin f}$$

 Here f is normalised to 0 -> 0.5 x sampling frequency fs.

Recursive or Infinite Impulse Response Filter

0.897, 1.018, 0.971, 0.983, 1.07, 1.002.....}

Complementary Filter used with IMU

where α = scaling factor chosen by users and is typically between 0.7 and 0.98 ρ = accelerometer angle θ_{new} = new output angle θ_{old} = previous output angle $\dot{\theta}$ = gyroscope reading of the rate of change in angle dt = time interval between gyro readings

Signal flow diagram model

Lowpass filter the accelerometer data

Integrating the gyroscope reading

- If $\alpha = 1$, p[n] is a ramp with a gradient of $\dot{\theta_e}$.
- If $\alpha < 1$, then the effect of the error overtime diminishes to $\alpha^n \rightarrow 0$.

Three Big Ideas (1)

1. A discrete time system can be characterized by its impulse response: $h[n] = b_0 \delta[n] + b_1 \delta[n-1] + b_2 \delta[n-2] \dots + b_k \delta[n-k]$

2. Once we know the impulse response h[n], and the input sequence x[n], we can find the output y[n] by convolution:

$$y[n] = x[n] * h[n] = \sum_{m=0}^{\infty} x[m]h[n-m]$$

Three Big Ideas (2)

- **3.** Convolution operation can be performed in four steps:
 - 1) **Reflect** impulse response at original to get h[n-m]
 - 2) **Multiply** input sequence x[m] with h[n-m]
 - **Sum** the product of the two sequences to get one output y[n]

$$y[n] = \sum_{m=0}^{\infty} x[m]h[n-m]$$

4) Advance the reflected impulse response by one sample period and repeat to get the next y[n]